
Apple IIe
#2: Hardware Protocol for Doing DMA 1 of 9

Apple II
Technical Notes

Developer Technical Support
Apple IIe
#2: Hardware Protocol for Doing DMA

Revised by: Glenn A. Baxter & Rob Moore November 1988
Written by: Peter Baum January 1983

This Technical Note explains the hardware protocol for doing direct memory access (DMA) on
the Apple IIe and Apple][and is meant as a guideline for developing peripherals which do DMA
on these machines, not as a specification for future Apple products or revisions.

This Note covers the timing differences between the Apple][and IIe and also gives tips on how
to design a peripheral card that will work in both systems. The reader should be very familiar
with either the Apple][+ or the Apple IIe, especially the timing on the data and address buses in
relation to the 6502.

DMA is used by peripheral cards in the Apple II family to transfer data directly into memory
without benefit of the processor. Transfer of data from a peripheral device into RAM can
normally be handled one byte at a time under control of the processor. By using DMA, you can
achieve greater data transfer rates than the 6502 can handle in software. This transfer rate can
approach the full-cycle time of the memory. This technique can also be used to transfer single
data bytes into memory without requiring the CPU to process an interrupt, which can be very
time consuming.

The DMA process entails five steps: turn the processor off, gain access to the R/W* line and
both address and data buses, complete the data transfer, release the data and address buses, and
finally, allow the microprocessor to restart. This Note covers each of these steps in detail.

At this point, I should caution the prospective developer that DMA on an Apple][+ or Apple IIe
can only be done under certain circumstances. Because DMA turns off the processor, any
program with a software timing loop will not work properly. These programs assume that each
instruction will take a fixed amount of time, which is not true when the processor stops in the
middle of an instruction. This assumption means that the Apple II disk drives will not work
since they require a timing loop to read a disk. (Co-processor cards work with DMA because
they initiate the disk access and know that DMA cannot be used until the disk is finished).

Another problem is that because of the mapping scheme used on the Apple IIe extended 80-
column (64K) card, a peripheral card cannot tell which memory bank is being used without a
complicated detection scheme. This problem means that if a DMA device writes to a certain
memory space, it might not be able to read the same data back.

Apple II Technical Notes

2 of 9 Developer Technical Support

65
02

A

E
0-

F
F

R
O

M
64

K
R

A
M

80
 C

O
L.

A
U

X
 R

A
M

D
A

T
A

 L
A

T
C

H

M
M

U
IO

U

D
A

T
A

LA
T

C
H

V
ID

E
O

C
IR

C
U

IT
S

T
IM

IN
G

C
IR

C
U

IT
S

7 4 L S 2 4 4

K
E

Y
B

O
A

R
D T
IM

IN
G

 A
N

D
 C

O
N

T
R

O
L

S
IG

N
A

LS

A
D

D
R

E
S

S
 B

U
S

 (
 A

0
-

A
15

)

E
X

T
E

R
N

A
L

D
A

T
A

B

U
S

M
D

 IN
/O

U
T

V
ID

E
O

D
A

T
A

R
A

M
 A

D
D

R
 B

U
S

(0

-7
)

K
B

D

R
O

M
E

N

IN
T

E
R

N
A

L
D

A
T

A
 B

U
S

 (
M

D
 0

-7
)

F
ig

ur
e

1–
A

pp
le

 I
Ie

 F
un

ct
io

na
l B

lo
ck

 D
ia

gr
am

74
LS

24
5

P
E

R
IP

H
E

R
A

L
S

LO
T

S

November 1988

Apple IIe
#2: Hardware Protocol for Doing DMA 3 of 9

Though the differences between the Apple IIe and Apple][+ architecture appear to be significant
to a device which uses DMA, this should not affect the design in most cases. A good rule of
thumb is that if a device is designed to work on the Apple IIe, then it will be backward
compatible and also run on the Apple][+. The converse is not true; cards that use DMA on the
Apple][+ might not work on the Apple IIe, hence, most of the descriptions in this Note refer to
the Apple IIe with occasional references to the Apple][+. For example, the timing specifications
listed are calculated from the Apple IIe timing paths unless otherwise noted.

Occasionally the descriptions refer to a chip on the motherboard of the Apple IIe, so a set of
Apple IIe schematics should be nearby. The corresponding parts on the Apple][+ will be
specified when applicable.

The following paragraphs describe and define some of the terms that are used throughout this
Note. The Apple IIe block diagram on the previous page may be helpful when reading about the
buses.

01 (phase one) time The time when the 01 system timing signal is high. During this time the
data bus, address bus, and RAM are used for video refreshing. This time
is also called the video cycle or video phase.

0o (phase zero) time The time when 0o clock is high. 0o is the inverse of 01. During this time
the microprocessor uses the data and address buses. This time is also
known as the CPU cycle or CPU phase.

IOU and MMU Two MOS custom chips inside the Apple IIe. See chapter 7 of the Apple
IIe Technical Reference Manual for more details on the custom chips.

Data bus The microprocessor, ROM, and RAM are connected to this bus. On the
IIe this bus generally has MOS components connected to it rather than
TTL and is sometimes called the MOS data bus. A 74LS245 bidirectional
bus transceiver (location B2 on the original motherboard) connects this
internal bus to an external bus that the outside world sees through the
peripheral slots. The data bus connected to the peripheral slots is called
the external data bus. The Apple][does not have these two data buses.
Instead, the peripheral slots are connected to the ROM, CPU data buffers,
and RAM data inputs. The RAM data outputs are multiplexed with the
keyboard data onto this bus.

Address bus There are three different sections to the address bus on the Apple IIe. The
first section consists of the addresses from the 6502A into a pair of
74LS244s (locations B1,B3). Part two connects the other side of the ’244
to the address bus that the peripheral slots see. Also connected on this bus
are the MMU, the ROM, and the chips that decode I/O SELECT,
DEVICE SELECT, and I/O STROBE. The third address bus is
generated by the custom chips and is only used to access the RAM. The
MMU and IOU automatically multiplex this bus with the high byte and
low byte of an address during any RAM access, whether it be for video
refresh or for a microprocessor instruction fetch. This third bus is called
the RAM address bus. The Apple][also has these three buses, but uses
8T97s and discrete logic instead of the 74LS244 and custom chips.

Apple II Technical Notes

4 of 9 Developer Technical Support

6502 microprocessor In the Apple IIe a 6502A, a 2 MHz part is used instead of the 1 MHz 6502
used in the Apple][+. Since the custom chips in the Apple IIe are MOS
and slower than the TTL in the Apple][+, the faster 6502A was used to
guarantee better margins. For example, the 6502A sets up the address bus
faster on the Apple IIe than the 6502 does in the Apple][+.

November 1988

Apple IIe
#2: Hardware Protocol for Doing DMA 5 of 9

On the IIe, all the timing signals are generated by the PAL timing chip, except for the 7 M signal
which is generated from an 74S109 or 74109 (early versions of the IIe). Although both the PAL
and the 74S019 use the 14 M signal for a clock, there will be some skew between edges of the 7
M clock and the timing signals from the PAL, such as the edges of 0o or 01. This skew means
the 7 M clock edge may rise as much as 20 ns before, or 5 ns after, the 0o falling edge. The
clock signals of the Apple][+ should be tighter than this (probably within 5 ns of each other)
since 7 M, 0o, and 01 are all generated from the same chip, a 74S175. Take this skew into
account whenever using the 7 M signal in a design.

Getting on the Bus (Exact Change Only)

1. Pull DMA low during 01 time.

On the Apple IIe, the DMA line controls the direction of the 74LS245, which
enables the internal data bus outwards to the peripheral slots or enables external
data onto the internal bus. Changing the state of the DMA line during 0o could
cause the ’245 to change directions, forcing the internal data bus to go tri-state
during a microprocessor read. The 6502 would read garbage and the computer
might go belly up by jumping to a random memory location.

On the Apple][, pulling the DMA line always forces the CPU data bus buffer to
point inward and drive toward the 6502. Pulling the DMA line low during 0o of a
write cycle would result in garbage being written to memory, since the data bus to
the RAM would suddenly go tri-state.

2. Wait 30 ns, then assert address bus and R/W* line.

Before driving the address bus and R/W* line, the system must process the
transition on the DMA line and release the bus. This requires:

25 ns ’LS244 output disable from low level
5 ns ’S02 low to high level output transition

30 ns delay from DMA negative edge before driving address bus

The 30 ns wait will also work on the Apple][, since it only needs 27 ns (’LS04
and 8T97).

2 1

3 0

H i g h

Apple II Technical Notes

6 of 9 Developer Technical Support

Figure 2–Getting On The Bus

3. Address and R/W* line must be valid within 213 ns of 01 positive edge.

This constraint is needed to meet the setup requirements of the IOU, MMU, and
RAM. This time can be derived from the 6502A (2 MHz) setup requirements.
The Apple][can wait for 300 ns before data must be valid, because it uses the 1
MHz 6502 which has a longer setup time.

Warning: This specification (the address setup time) is the major cause of failure for
cards which use DMA in the Apple IIe. Many DMA cards which were
originally designed for the Apple][+ do not meet this specification.

During DMA (Keep Your Hands Inside the Bus at all Times)

1. Don’t drive the data bus during 01 time.

On an Apple][+, it is safe to drive the data bus 35 ns after asserting the R/W* line
low, regardless of the point in the timing cycle. When the R/W* line goes low,
the 74LS257s at locations B6 and B7 tri-state the data bus, even in the middle of
0o or 01. This action prevents a bus fight from occurring between a DMA device
and the system.

At first glance of the Apple IIe logic schematics, it appears that a bus fight cannot
occur on the data bus. During the 01 half of a write cycle, the 74LS245 tri-states
the data bus within 30 ns of the R/W* line being pulled low. While this does
preclude a fight from occurring on the data bus during 01, it doesn’t prevent a bus
crash from occurring at the beginning of 0o. At the beginning of 0o, the 74LS245
is enabled and will drive the external data bus. If the peripheral card also drives
the data bus, there could be a horrendous bus fight, since the 74LS245 can source
15 ma and sink 24 ma per line. This might cause a spike on the ground plane,
which could cause a processor to reset on a co-processor card.

Let us take a look at the problem by stepping thru Figure 3, a timing diagram.

The diagram starts with the video cycle of a read operation. During the video
cycle, the video refresh data is read from the RAM and put on the data bus. This
video data will appear on the peripheral slot (external) data bus because the
74LS245, as can be seen from Table 1, drives outward during 01 of a read cycle.

Typically, the address bus and R/W* line would be setup by the 6502A during 01
for the next CPU cycle, but instead, a peripheral card pulls the DMA line low. As
explained earlier, the peripheral device should wait at least 30 ns before driving
the address bus and R/W* line. In this first DMA cycle, the peripheral card wants
to read a byte from RAM, so it keeps the R/W* line high.

November 1988

Apple IIe
#2: Hardware Protocol for Doing DMA 7 of 9

At this point we must switch over and use the Apple][+ to explain the timing
required to read the data from RAM. The rule of thumb, that designing a DMA
card for the Apple IIe will be backward compatible and run on the Apple][+, will
not hold here. On the Apple][+ data is valid on the peripheral connector a
minimum of 468 ns from the 0o rising edge and holds to at least the falling edge
of 0o at 490 ns. The hold time is actually the minimum propagation delay from
the falling edge of 0o thru the following chips: 74LS257 at J1, 74LS139 at F2,
74LS20 at D2, 74LS00 at A2, and finally to the enable of the 74LS257s at B5 and
B6. On the Apple IIe a byte from RAM becomes valid at most 345 ns after the
rising edge of 0o and stays valid until the 0o falling edge.

Apple II Technical Notes

8 of 9 Developer Technical Support

OE 74LS245

/DMA

MD IN/OUT

DATA

ADDR

(40 – 213 ns)

(5 ns Max)

(130 ns Max)

(468 ns*) (170 ns Max)

(30 ns Min)

(40 - 213 ns) * This is an Apple][+ specification

7 M

PH0

PH1

R/W

VALID VALID

VALID VALID VALID

Figure 3–Timing Diagram

November 1988

Apple IIe
#2: Hardware Protocol for Doing DMA 9 of 9

In the second DMA cycle, the timing diagram shows the peripheral card writing a
byte to memory. In the first phase of the cycle, the video phase, the address bus
and R/W* line are setup by the peripheral card within the timing specifications
described earlier, 213 ns. Though the direction of the 74LS245 still points toward
the slots, the ’245 is disabled when the R/W* line is pulled low by the peripheral
device (see Table 1). This will tri-state the external data bus. All the signals stay
unchanged through the rest of the video phase, until the CPU cycle starts with the
rising edge of 0o.

Most bus fights occur at the beginning of the CPU cycle. The CPU cycle begins
with address bus and R/W* line setup already and the data bus tri-stated. The
signal MD IN/OUT, which drives the 74LS245 direction control, is generated by
the MMU and is always low during 01, so the 74LS245 drives toward the slots.
MD IN/OUT uses the 0o rising edge to clock itself high during a DMA write
cycle, but because the MMU is a MOS chip the delay before MD IN/OUT finally
rises can be as long as 130 ns from the 0o rising edge. Hence, at the beginning of
0o the 74LS245 is in tri-state mode, but with the direction set to drive toward the
peripheral slots.

PHO R/W Stable State of 74LS245
1 0 (Write to RAM) High impedance
1 1 (Read from RAM) Outward driving external data bus (slots)
0 0 (Write to RAM) Inward driving into RAM
0 1 (Read from RAM) Outward driving external data bus (slots)

Table 1–Stable State of 74LS245

Within 5 ns after 0o goes high, the chip enable to the 74LS245 goes low, enabling
data onto the external data bus. The 74LS245 specification guarantees that the
data will be valid within 40 ns from the chip enable. If the peripheral device was
also driving the bus, there would be a bus crash. To prevent this bus crash, the
data bus cannot be driven during 01, unless the data is pulled off the bus before 0o
goes high. This means that the rising edge of 0o cannot be used to gate data on
and off the bus. The bus fight will occur before the peripheral card can tri-state
the data bus.

Data can only be enabled onto the bus after the 74LS245 has changed directions
and is driving the internal data bus. The DMA device must allow 130 ns for the
MD IN/OUT line to change, plus the delay for the 74LS245 to change directions
which takes 25 ns, for a total of 155 ns.

After this 155 ns, the data must be valid on the bus within 55 ns, because the
RAM requires data be setup at the CAS falling edge, which occurs 210 ns into 0o.
This does not leave any time to spare, since, for example, a 74LS245 has a 40 ns
enable time. This timing criteria will also work for the Apple][+ since the setup
time for 16K RAM is the same as the 64K RAM, and CAS also falls at 210 ns.

Apple II Technical Notes

10 of 9 Developer Technical Support

The data hold time of 55 ns after CAS falls is also the same for both the Apple IIe
and the Apple][+.

Here is a scenario for a DMA write. Set up the address bus and R/W* line within
the required 213 ns, then wait for the first 7 M (pin 36 on slot) falling edge after
0o goes high before enabling your buffer onto the data bus. This edge will occur
at 140 ns into 0o, and when the gate delay is added, should guarantee the buffer
will not be driving the bus in the first 155 ns. I don’t advocate depending on a
minimum gate delay as standard design practice (my college professor thinks
public whipping would be a justifiable punishment) but this is the real world (I’m
not getting graded anyway). The data bus is valid by the time CAS falls, and
should be stable for at least another 55 ns or until 0o falls.

2. The processor can be held off for a total of 10 µs. (10 0o clock cycles).

This is true if a Rockwell 6502 is being used. (A Synertek part can be held off for
as long as 40 µsec.) This time is the maximum cycle time of the 6502 and if there
are no clock transitions within this time, it could result in internal registers
(A,X,Y) losing data. This maximum time varies from manufacturer to
manufacturer of the 6502.

3. MMU and IOU multiplex address bus

The custom chips automatically handle the multiplexing required of the RAM
address bus. The external device doing DMA must set up the address bus and
R/W* line within 213 ns of the rising edge of 01 just like the 6502A does. The
custom chips will automatically generate the addresses to the RAM for the video
refresh cycle during 01, but use the addresses from the address bus to set up for
the next instruction cycle. Hence, the only consideration on the address bus
during DMA is to meet the 213 ns setup time requirement.

The 213 ns setup time will also work with the Apple][since it can take as long as
300 ns to set up the address bus and R/W* line.

Getting Off the Bus

1. Don’t release DMA during 0o.

This is analogous to step 1 of Getting on the Bus. If the DMA line is released
during 0o the microprocessor will try to execute a cycle during this time without
the data or address bus set up properly. This random instruction fetch will
probably cause the system to crash.

2. Tri-state address bus drivers on peripheral slots

November 1988

Apple IIe
#2: Hardware Protocol for Doing DMA 11 of 9

The DMA line is holding off the addresses from the 6502 onto the internal
address bus by tri-stating the two 74LS244s on the Apple IIe bus and the 8T97s
on the Apple][+ bus. The address bus and R/W* line from the external device in
the peripheral slots should be tri-stated before releasing the DMA line or a bus
fight will occur between the internal bus buffers and the peripheral slot drivers.

Apple II Technical Notes

12 of 9 Developer Technical Support

3. Release DMA line

These last two steps are the opposite of the first two steps required to get on the
bus. Both of these steps, releasing the address and R/W* lines then the DMA
line, should be done within 178 ns of 01 going high. This allows time for the
6502A to set up the address and R/W* lines properly for the next instruction
cycle.

213 ns address set up requirements
5 ns ’S02 output high-to-low transition

–30 ns ’LS244 out enable time
178 ns to release DMA line and allow 6502 to set up address bus

Again, the Apple][can take longer, up to 260 ns, before releasing the DMA line.

Further Reference
• Apple IIe Technical Reference Manual

